Charge transport through polyene self-assembled monolayers from multiscale computer simulations.
نویسندگان
چکیده
We combine first-principles density-functional theory with matrix Green's function calculations to predict the structures and charge transport characteristics of self-assembled monolayers (SAMs) of four classes of systems in contact with Au(111) electrodes: conjugated polyene chains (n = 4, 8, 12, 16, and 30) thiolated at one or both ends and saturated alkane chains (n = 4, 8, 12, and 16) thiolated at one or both ends. For the polyene SAMs, we find no decay in the current as a function of chain length and conclude that these 1-3 nm long polyene SAMs act as metallic wires. We also find that the polyene-monothiolate leads to a contact resistance only 2.8 times higher than that for the polyene-dithiolate chains, indicating that the device conductance is dominated by the properties of the molecular connector with less importance in having a second molecule-electrode contact. For the alkane SAMs, we observe the normal exponential decay in the current as a function of the chain length with a decay constant of beta(n) = 0.82 for the alkane-monothiolate and 0.88 for the alkane-dithiolate. We find that the contact resistance for the alkane-monothiolate is 12.5 times higher than that for the alkane-dithiolate chains, reflecting the extra resistance due to the weak contact on the nonthiolated end. These contrasting charge transport characteristics of alkane and polyene SAMs and their contact dependence are explained in terms of the atomic projected density of states.
منابع مشابه
Effective anion sensing based on the ability of copper to affect electron transport across self-assembled monolayers.
The ability of copper ions to affect the charge-transfer resistance of self-assembled monolayers (SAMs) of a tris-(2-pyridylmethyl)amine-based ligand on to gold electrodes is used to create a novel, sensitive and selective electrochemical cyanide sensor.
متن کاملCharge Transport through Oligoarylene Self-assembled Monolayers: Interplay of Molecular Organization, Metal-Molecule Interactions, and Electronic Structure
Organic compounds–either as single molecules or organized in self-assembled monolayers (SAMs)–can act as wires, rectifiers, switches, or even transistors in the development of ultraminiaturized electronics. The prospect of such molecular electronics has led to a steadily growing interest in the characterization of both the electronic and structural features of relevant molecular species bound t...
متن کاملConformation-driven quantum interference effects mediated by through-space conjugation in self-assembled monolayers
Tunnelling currents through tunnelling junctions comprising molecules with cross-conjugation are markedly lower than for their linearly conjugated analogues. This effect has been shown experimentally and theoretically to arise from destructive quantum interference, which is understood to be an intrinsic, electronic property of molecules. Here we show experimental evidence of conformation-driven...
متن کاملInteraction effects in electric transport through self-assembled molecular monolayers
We theoretically investigate the effect of intermolecular Coulomb interactions on transport through selfassembled molecular monolayers (or other devices based on a large number of nanoscale conductors connected in parallel). Due to the interactions, the current through different molecules become correlated, resulting in distinct features in the nonlinear current-voltage characteristics, as we s...
متن کاملComputational chemistry for molecular electronics
We present a synergetic effort of a group of theorists to characterize a molecular electronics device through a multiscale modeling approach. We combine electronic-structure calculations with molecular dynamics and Monte Carlo simulations to predict the structure of self-assembled molecular monolayers on a metal surface. We also develop a novel insight into molecular conductance, with a particu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 112 47 شماره
صفحات -
تاریخ انتشار 2008